Post-Lie algebra structures for nilpotent Lie algebras
نویسندگان
چکیده
منابع مشابه
Lie Algebra Prederivations and Strongly Nilpotent Lie Algebras
We study Lie algebra prederivations. A Lie algebra admitting a non-singular prederivation is nilpotent. We classify filiform Lie algebras admitting a non-singular prederivation but no non-singular derivation. We prove that any 4-step nilpotent Lie algebra admits a non-singular prederivation.
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملComplex structures on nilpotent Lie algebras
We classify real 6-dimensional nilpotent Lie algebras for which the corresponding Lie group has a left-invariant complex structure, and estimate the dimensions of moduli spaces of such structures. AMS: 17B30, 32G05, 53C30.
متن کاملCharacteristically Nilpotent Lie Algebras and Symplectic Structures
We study symplectic structures on characteristically nilpotent Lie algebras (CNLAs) by computing the cohomology space H(g, k) for certain Lie algebras g. Among these Lie algebras are filiform CNLAs of dimension n ≤ 14. It turns out that there are many examples of CNLAs which admit a symplectic structure. A generalization of a sympletic structure is an affine structure on a Lie algebra.
متن کاملAffine structures on nilpotent contact Lie algebras
Any Lie algebra equipped with a symplectic form can be equipped with an affine structure. On the other hand there exist (2p + 1)-dimensional Lie algebras with contact form and no affine structure. But each nilpotent contact Lie algebra is a one-dimensional central extension of a symplectic algebra. The aim of this work is to study how we can extend, under certain conditions, the symplectic stuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Algebra and Computation
سال: 2018
ISSN: 0218-1967,1793-6500
DOI: 10.1142/s0218196718500406